
Interacting holes in CuO cyclic chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 6895

(http://iopscience.iop.org/0953-8984/5/37/008)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 01:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condens. Mater 5 (1993) 6895-5910. Riated in the UK 

Interacting holes in CuO cyclic chains 
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Institute of Physics, University of Oslo, N-0316 Oslo, Noway 

Received 5 March 1993, in final form 7 IUIX 1993 

Abstract. The Kondo-reduced Emery model is investigated for cyclic CuO chains. When the 
spin-exchange coupling is zero, the model is exactly solvable in terms of spinless fermion 
operators. In the general case we find that the ground state energy has an unconventional 
dependence on an extemal m a p t i c  flux. This behaviour can be interpreted as due Ld an 
induced statistical flux. The smmgcaupling behaviour can be explained in terms of compound 
particles. which allows some rigorous results in this limit. 

1. Introduction 

In the last few years many people have been interested in the properties of strongly correlated 
fermionic systems. To a large extent this interest was associated with the phenomenon of 
high-T, superconductivity (HTS) discovered at the end of 1986 by Bednon and Muller [11. 
In spite of an enormous experimental and theoretical activity since then no great progress 
has been made in understanding the mechanism of HTS. 

It is now generally accepted that regular CuOl planes are responsible for HTS. 
Both components, Cu and 0, seem to be important in the strong antiferromagnetic and 
superconducting properties of the HTS family. Anderson [2] was the first to suggest that 
the simple Hubbard model could be a good candidate to describe this system. Although the 
majority of theoreticians today deal with strongly correlated models, their interests are no 
longer attached to a very definite model. Instead, many are involved in investigating the 
models according to their own prejudices. 

Among these other models, one can find those involving only one sublattice represented 
by Cu sites. This approach supposes the Cu-ion state to be strongly correlated with the 
electronic configuration of 0 ions from its environment. We do not wish to discuss the 
question of advantages and disadvantages of concrete models, but our choice is associated 
with what we call the Kondo-reduced Emery ( m E )  model. It and other similar models 
[4,5] originate from the Emery model [3], where a conventional 'vacuum' corresponds to 
the ionic states Cu+ and Oz-. Single hole excitations will transform them into Cu2+ and 
0-, respectively, while for the Cu3+ and neutral 0 states one needs to include the on-site 
Coulomb repulsion terms. The wave functions on Cu and 0 sites are strongly hybridized. 
This is equivalent to including in the Hamiltonian a Cu-0 hopping term of rather strong 
amplitude. Because a single-hole energy level on an 0 site is a few eV above that on a Cu 
site, the former would be approximately empty of holes if there were no doping. 

The KRE model can be derived in second order of the perturbation theory from the 
original Emery model when the expansion proceeds in a small parameter, which is the 
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ratio of a hopping amplitude over the energy gap [6,7]. According to this model all 
Cu sites are treated as if they are Cu2+ ions. Hence, these ions are responsible for strong 
antiferromagnetic correlations in HT superfonductors. The carriers due to doping preferential 
occupy 0 sites, transforming them into t h e W  state. In the framework of the KRE model, the 
Cu-0 hopping amplitude transforms into the effective 0-0 hopping term which includes a 
spin scattering on the intermediate Cu site. Actually, such a hopping amplitude differs from 
that due to a simple kineticenergy term, but this 0-0 charge transfer is more reminiscent 
of a two-particle interaction. The same- (second-) order perturbation theory leads to the 
spin-exchange interaction of holes on the nearest 0 and Cu sites. In short, one can say 
that KRE model reflects the lowenergy properties and neglects all the contributions due to 
upper Cu and 0 bands, i.e. two-hole on-site states are excluded. 

The Hamiltonian of the lcRE model has the following form: 

H = 5 p~..di.,4~,.#,,.s + J ~ P ! , d f t . p d . t ~ p , , p  (1) 
(n#h.R) W) 

where creates a hole on the 0 site r with spin projection a while di ,B creates one on 
the Cu site R with spin projection ,8. In the first term one sums over all Cu sites R and 
the nearest 0 sites labelled by rI and rz. This represents 0 holes hopping in the localized 
background of Cu spins. The second term gives a spin exchange of Cu and 0 holes situated 
at the nearest sites. In figure 1 the effect of the Hamiltonian on a state consisting of one 0 
and four Cu spins is shown. 

+ o (  . C O W '  

0 o v l o  
+ J O  O t J O  Figure 1. Theeffectofthe HamillonianoflheKondo- 

reduced Emery model on a state consisting of one 0 
and four Cu spins. 

o o +  

In this work we are interested in the properties of CuO alternating chains. This problem 
seems to be very far from giving any explanation of HTS mechanisms. However, such 
chain fragments are very common in 0-deficient planes of YBazCujOb+, and similar HTS 
compounds. Nowadays there is a real possibility for direct neutron measurements of a 
spin density on Cu sites belonging to the short chain fragments. This is equivalent to the 
collective contribution of Cu spins to the paramagnetic susceptibility [SI. In addition, short 
chain fragments enclosed periodically demonstrate very interesting properties, which could 
be interpreted in terms of spinless carriers with a local statistical field attached I9, IO]. 
This fact points to the possibility that 0 carriers in the regular CuOz planes can be quasi- 
autolocalized with a statistical field attached in order to gain energy. A similar statistical 
flux is also seen in the r-J model [11-13] and the connection to anyons and fractional 
statistics has been pointed out [14,15]. 

This work is organized as follows. In section 2 we present an exact solution of 
the KRE model with the spin-exchange term neglected. This allows is to extract the 
statistical field contribution to the energy of the spinless fermions. It is noteworthy, as 
has been demonstrated in [16], that such a model can to be generalized by introducing the 
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special exchange interaction which keeps the magnetic and spinless fermionic degrees of 
freedom separated. In section 3 we return to the more realistic case of non-zero magnetic- 
coupling constant J and obtain numerically the ground-state energies of small cyclic chains 
in an extemal magnetic field. Similarly to the situation in the exactly solvable model, 
the statistical field that determines the carrier-band motion still persists. Some numerical 
results concerning the density-density and correlation functions of carriers are presented in 
section 4. Surprisingly, they are found to be almost completely independent of the coupling 
constant J .  We also calculate C d u  spin correlation functions. These are found to be 
more sensitive to the spinexchange coupling. In section 5 we consider the strong-coupling 
limit when a carrier is effectively transformed into a compound particle due to the strong 
magnetic interaction with the Cu spins surrounding the 0 hole. We can then obtain an exact 
solution of the model for chains with N = 3 and N = 4 Cu spins, which confirms our 
previous numerical results. 

2. Exact solution for zero spin-exchange coupling 

We consider an alternating ring of N Cu sites and N 0 sites. The Cu ions are situated 
on the half-integer-numbered sites $, ;, . . , between the 0 sites at 1.2,. . . , N. There is 
a localized spin-; d hole on every Cu site and we consider n spin-f 0 p holes hopping 
between the 0 sites. 

We will first consider the simplest case when spin-exchange coupling J = 0. The 
Hamiltonian ( I )  can then be written as 

. 

and we will impose periodic boundary conditions 

dN+i = di PN+1 =PI. (3) 

The Hamiltonian changes the position of the 0 holes, but it never changes the spin sequence 
{ U ~ , U * ,  ..., u"+~}. So the subspace of states which have the same spin configurations or 
one that is obtained by applying the cyclic permutation operator P: 

is invariant under the action of the Hamiltonian. Using this special symmetry of the 
corresponding wave functions, this model has recently been solved exactly and found to be 
equivalent to a system of non-interacting spinless fermions [lo]. 

A more compact solution will be presented here. It is very similar to the exact solution 
of the one-dimensional Hubbard model in the limit U --f 00 obtained by Caspers and Iske 
[ 171. In both cases there are effectively n spin-f particles on N sites, and the sequence of 
spins is not changed by the Hamiltonian. The difference is that in the above Kondo-reduced 
model the spin sequence consists of n + N spins and the holes change their spins when 
moving between 0 sites. Nevertheless it is possible to construct almost the same effective 
Hamiltonian in both cases. 



6898 H Haugerud et a1 

Using p!, and d: as creation operators of holes of spin U on 0 and Cu sites, a general 
state with n holes on the 0 sites j l ,  j2 ,  ...., j. can be written 

I QjLj2. , . j f l  (u17flz, . . . S @ ~ + , i o ) )  = d+,,,d\,o* t d j , - + , ~ i ~ P j , , ~ i , * , d ~ , t ~ , ~ , , + ~  t . . . t . . . 
(4) 

d! , I -  f.0h+!Pj*6',~+* d! 1 2 t  i,"h+l ... d' N--f.U"+n 10). 

We now find it convenient to introduce a state which is the Fourier sum over the cyclic 
permutations of the spins. When it has wave number k ,  it can be written as 

I@j , j2 , . . j s (k :  ul. oz. .... u N + ~ ) )  = - C e ' " X ' I Q j , h . . . j . [ p m ( u I .  oz, ..., u"+~)]) 
"'-1 

Ji7 m=o 

LY) Q , 1 
= -[ I~,,h . . . j . ( ~ i , u z . . . . , u ~ + . ) )  + e  I il,l,,.j.(u2,u3,...,u1)) + ... @ 

+ eikLn'-l) I Qj2j*. . . i"(on',  U n ' t I  . . . I  0nt-1 I)] 

where n' < N + n is such that 

"' P {Ul, Uz, ,.., W + n )  = { S , t 1 9  U d t Z .  . - ,Ud)  = iol, 0 2 ,  . - , O N t n )  

and the wave number takes the values 

k = (2x/n') fi  @ = 0, I ,  2, ...., n' - 1. (5) 

To find the effect of the Hamiltonian (2) on the states we consider the three different cases: 

I: 

Iia: 

IIb: 

1 < j ,  < j2 < ... < j .  < N 

1 = j l  < j z  < . . . < j m  < N 
1 < j l  < j z  c ... < j , ,  = N .  

In the first case the Hamiltonian is simply changing the indices j as in the Hubbard model 
and we have 

H l @ j i l j z , , . j , W ;  0 1 1  0 2 ,  . - , W + n ) )  = - r [ \ @ j t - l j 2 , , , j a ( k  'JI, 02s . . v u N t n ) )  

+ \ @ j l t l j 2  ...jn (k uI,uZ, ...,U N t n ) )  +. ..+ ~ ~ j ~ j ~ , , , j ~ t l ( k ~ ~ l ~ ~ Z ~  . - ~ u N + o ) ) ]  

If j l  + 1 = j2  there will be no I@, ,+ l j z , . . j~ (k ;  U ] ,  u2, ..., u"+~)) term and this state is 
forbidden. 

Now we define the new set of states \W,,iz,,,ip) where the quantum numbers k and U, are 
not involved and a corresponding effective Hamiltonian Hee, such that the effect of Herr on 
I q j , j  2...,a) is the same as the effect of H on I @jlj 2.. . jn(k; CI, o2, ..., UN+")). This is obtained 
by 
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in which cj are fermion operators. 

(2) moves a hole f" 0 site 1 to site N. Then we have 
We now consider the case Ea. The only difference from case I is when the Hamiltonian 

The only difference between this effective Hamiltonian and that of the single-band Hubbard 
model is the factor 

We can make this Hamiltonian translationally invariant by the local gauge transformation 
and the possible values k can take. 

cj = e(i@,)aj ct I -  - ei-ioi)a! J (9) 

when the phase angle takes the special value 0, = j A. When the parameter A satisfies the 
condition 

(10) 

which is equivalent to A = -k/N + n, the effective Hamiltonian takes the form of the 
tight-binding model 

e(ilkt(N-i)All  = el-ilA-zN)l 



6900 H Haugerud et a1 

It is easily diagonalized in momentum space where it becomes 

H~~ = -25 C c o s ( q  + A)& 
q 

with the quantized momenta 

q = (Zn/N)u U = 0, 1. .. . 1  N - 1. (13) 

The number operator n, = ais, has eigenvalues n4 = 0, l  so the eigenvalues of the 
Hamiltonian are 

where the set of quantum numbers ( n q ]  has to satisfy the constraint 

Enq =n. 
P 

We see that the energy spectmm is identical to the specmm of the single-band Hubbard 
model [I71 except for the overall minus sign and the possible values (5) the wave number 
k can take. 

We are now also able to calculate the gmund state correlation function for two 0 boles 
in a system with N Cu holes. The ground state will be of the form 

I@o) =Qi,aizlO) (16) 

and has the energy 

Eo = 2r (cos 91 + cos 92) 

where qj = 91 - k/N with the constraint g l  p q2. In the ground state the quantum numbers 
must be chosen such that both q1 and 12 are as close as possible to n. This is obtained 
when the difference 41 - t ) ~  is as small as possible. Thus we have 91 - q2 = f2z /N.  The 
correlation function is given by 

( n j , n j d N  = (@ol~~,aita~aizl@d =2[1 - C O S ( ~ I  -qz)(ji - jz)]/NZ. 

when j, # j z .  With the above result for 9, - q2 in the ground state, it then becomes 

(17) 

(nj1njJ~ =2[1 -cos(2x/N)(jl - jz)]/NZ. (18) 

When j l  = jz,  we have simply 

( n j , n j , ) N  = (nj,)N =2/N 
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which is simply the density of two 0 holes on N sites. 

factor 
A homogeneous magnetic flux q5 through the ring leads to the appearance of a phase 

in the hopping term r .  This changes the energy spectrum (14) to 

~ ~ . ~ , = 2 t C c o s  
9 

We see that the term - k / N  appears in the energy in the same way as the external flux. 
It is therefore natural to consider it some kind of induced flux due to the dynamics of the 
quantum spins. Under interchange of holes it was shown in [lo] that it also shows up in 
a phase factor, which is consistent with this interpretation. One can therefore also call this 
induced term a statistical flux. 

The correlation function does not depend on the magnetic flux since the difference 
- q? is independent of it. 

3. Gmundatate energies 

When the spin-exchange coupling J # 0, the Hamiltonian ( I )  does not have an exact 
solution. We have instead performed numerical calculations of the ground-state energy 
(GSE) using the DagottwMoreo algorithm [ 181. We have considered systems characterized 
by different numbers of Cu and 0 holes and a homogeneous magnetic flux q5 through the 
ring. To find the ground state for an even number of spins we used as a basis all possible 
states with Sz = 0, and for an odd number of spins we chose as a basis all states with 
S, = - 1, for convenience spin is measured in integer units. In figure 2 the ground state. of 
a chain consisting of one 0 and six Cu holes is plotted as a function of external magnetic 
flux. The upper curve corresponds to J = 0 and can also be obtained from (19). It changes 
gradually as J is increased to J = 0.1. The shape of the GSE is similar for all J 0.1. 
There are absolute minima in the energy at q5/k N 0.28 and q5/% N 0.72 and at the other 
periodically equivalent points. 

- 2 . 0 0  

- 2 . 0 2  

EO - 2 . 0 1  

E, - 2 . 0 4  

- 2 . 0 4  
- 2 . 0 6  

- 2 . 0 8  

0 0 . 2  0 . 4  0 .6  0 .8  1 0.2  0 .a  0 . 6  0 . 8  i 

6 & E 
Figure 2. Ground-state energy Eo as a function of 
magnetic flux in a system consisting of one 0 and six 
Cu holes. The coupling constant 3 is changed from 0 
to 0.1 in steps of 0.01. 

Figure 3. Ground-smte enew Eo as a function of 
magnetic flux in a system consisting of one 0 and seven 
Cu holes. The coupling constant J i s  changed fmm 0 
to 0.1 in steps of 0.01. 

When the number of Cu spins increases by one, we find the new energies shown in 
figure 3. There is now an absolute minimum at q5/% = 0.5 and slightly higher minima 
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Figure 4. Ground stateenergy as a function of magnetic 
flux in a system consisting of two 0 and six Cu holes. 
The coupling constant J is changed from 0 to 0.1 in 
steps of 0.01, 

Flgure 5. Ground slate energy EO as a function of 
magnetic flux in a system consisting of two 0 and seven 
Cu holes. The coupling constant J is changed fmm 0 
to 0.1 in steps of 0.01. 

at @ / 2 z  = 0.1. Qualitatively the same behaviour is found with two holes moving in a 
background of six Cu spins, shown in figure 4. With two holes among seven Cu spins, 
shown in figure 5, we again find a dependence on the extemal flux similar to the case shown 
in figure 2 with one 0 hole and six Cu spins. 

The effect of the extemal flux is seen to depend in a significant way on the total number 
of spins in the system, i.e. the number of mobile 0 holes plus the number of localized Cu 
spins. We see that the most important changes in the energy occur when J increases from 
0 to 0.1 in units of 7.  For further increases in J the variation of the GSE with the flux does 
not change substantially, simply the magnitude of the energy. In section 5 we will explain 
this behaviour in the strong-coupling limit in terms of a compound particle consisting of an 
0 hole and its two nearest Cu spin neighbours. 

From these results we may also conjecture about the behaviour of such systems in the 
thermodynamic limit. Figures 3 and 4 indicate that the local minima of the GSE will persist 
at integer and half-integer values for the magnetic flux @/k. When increasing the length 
of the chain these minima are expected to tend to the same limit This would then be 
evidence for a superconducting state of the one-dimensional ring according to the Byers- 
Yang theorem [19]. Similar results are obtained for the attractive and repulsive Hubbard 
model and a t-J-like model on cyclic chains [20]. The situation with odd numbers of spins 
in figures 2 and 5 in the thermodynamic limit seems even more intriguing, because the GSE 
minima are situated at the magnetic flux values @/2x = t ( 2 n  f 1). The periodicity of 
EO(@) in this case again signals the appearance of superconductivity at T = 0. Perhaps 
the unusual shift of the minima is connected with a constant induced flux of magnitude 
@/2n = a. 
4. Correlation functions 

Numerically it is straightforward to calculate the correlation function between two 0 holes. 
With zero spin-exchange coupling the correlation function was found to be independent of 
the flux in the analytical result (18). When the spinexchange coupling J is different from 
zero. the correlation functions are found to be almost independent of the magnetic flux. 
They change by at most I % or 2% as the flux is varied and we will therefore take the flux 
to be zero. 

We have numerically calculated the charge correlation function Cij = ( n i n j )  for the 0 
holes. At J = 0 the two holes were found to repel each other. With increasing coupling J 
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this repulsion increases as seen in figure 6, where the correlation functions are calculated 
for a system consisting of two 0 holes and five Cu spins. When J > 50 there is almost zero 
probability for the two holes to be nearest neighbours and ( n m  ) approaches the upper 
limit f.  This asymptotic value is consistent with two equally dishced holes distributed 
over five possible sites. For J = 0 the numerically calculated correlation functions agree 
with the analytical result of (18). 

J J 
Figure 6. Oxygen hole correlation functions in a 
system consisting of two 0 and five Cu holes wilh zero 
magnetic field. magnetic field. 

Fiiurc 7. Oxygen hole correlation functions in asystem 
consisting of two 0 and Six Cu holes and with W O  

In figure 7 the number of Cu holes is increased by one. Now there are three different 
possible distances between the two 0 holes. Again we see that the correlation functions 
increase with the hole separation. The repulsion becomes stronger as the spin-exchange 
coupling increases, but the next-nearest-neighbour correlation remains small and almost 
constant. The reason for such an excluded-volume effect will be elucidated in section 5 
where the concept of a compound particle makes a strong 0-0 repulsion at the nearest sites 
clear. 

To obtain some information about the spin configurations we have also calculated the 
spin correlation functions of the Cu spins. When J = 0 these correlations are irrelevant 
since the Hamiltonian does not change the spin sequence. However, when J z 0, the 
configurations are mixed and non-trivial correlations will arise. In figure 8 we plot the 
different correlation functions versus J in a system consisting of one 0 and six Cu spins. 
They are calculated with magnetic flux $/& = 0.2. The correlation functions are defined 
as 

where s,,, is the spin projection of the spin on the mth Cu site and s, the projection of the 
spin on the nth Cu site. The Cu spin expectation value ( s  ) is also calculated and we see that 
somewhat surprisingly ( 8 )  # -$. This means that ( s )  and the 0-spin expectation value 
( U  } are not equal. The 0 spin tends to have a positive spin projection when ( s ) is negative. 
This means that the 0 spin tends to arrange the nearest Cu spins antiferromagnetically. 

In figure 9 one Cu spin is added and ( s ) = ( U  ) = 0 because the number of spins up 
and down are equal and the state is symmetric with respect to the spin projection. Here the 
tendency to antiferromagnetic ordering is even more clear. 

The correlation functions are plotted in figure 10 as a function of the magnetic flux 
when the spin-exchange coupling J = 0.1. The step-like behaviour at 4/21? = 0.22 and 
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- 0 . 4  - 
SI2 - 0 . 4  - 0 . 6  . * 6 B IO 

3 3 

Fire 8. Copper spin correlation functions as Figure 9. Copper $pin wrrelation functions as 
function of spin-exchange coupling J with magnetic function of spin-exchange coupling J with magnetic 
flux 41% = 0.2. The srjtem consists of a cyclic chain flux 41% = 0.2. The system wnsists of a cyclic chain 
of one 0 and six Cu spins. of one 0 and seven Cu spins. 

' Figure 10. Capper spin correlation functions as a function 
of magnetic flux wilh spin-exchange coupling J = 0.1. The 
system wnsists of a cyclic chain of one 0 and seven Cu spins. 2% 

0.78 corresponds to the sharp peaks in the lowest plot of the elsewhere smooth ground state 
in figure 3. This is because the ground-state wave function changes at these values of the 
flux. A similar situation appears in figure 9 in a narrow region around J = 0. 

Concluding this section we wish to discuss the possibility of application of the conformal 
field theory ideas to estimate the exponents of the spinspin correlation function [21,22]. 
In order to realize this program for the spin-f Heisenberg model, we need to perform a 
finite-size calculation of the leading terms in the OS€ and of the first excited energy level. 
Extrapolations performed for the lattice size up to 18 spins give a reasonable, but not perfect, 
estimate of the exponent mentioned above. However, a similar estimate is problematic in 
the present model. Therefore, let us consider canier concentration f .  Corresponding chain 
fragments are (3 Cu, 1 0). (6 Cy 2 0) and (9 Cu, 30). Certainly, this information is not 
enough to extract the terms proportional to N and N-' (N is the total number of Cu sites). 
It is noteworthy that computer size limits the use of numerical methods to find the GSE for 
chain fragments consisting of more than 10 Cu sites. 

5. Compound particles in the strong-coupling limit 

The concept of compound particles has been discussed after the remark of Anderson [23] 
that the Emery model can be mapped on a single band model. Such a mapping was carried 
out by Zhang and Rice [24]. They interpreted a compound particle as an 0 hole attached to 
the 0 plaquene surrounding the central Cu site. Emery and Reiter [25] also used the idea 
of a compound particle, however, they involved in the complex particle one 0 hole and 
two Cu spins. So, our consideration is more of the Emery-Reiter type than of that due to 
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Zhang and Rice. The intrinsic structure of the complex involving the 0 hole, which tends to 
localize in its environment some paramagnetic configuration, is known after the estimate by 
the variational method by Glazman and Ioselevich [26] and relates also to the Emery-Reiter 
type of interpretation. In this section we present one more example of a compound particle 
model for which an exact solution exists. 

When the spin-exchange coupling J is much larger than the amplitude of the hopping 
amplitude r ,  one 0 hole and the two Cu holes surrounding it are bound in a compound 
particle due to the strong Cu-0 exchange force. In the leading order such a compound 
particle is localized. However, due to the hopping amplitude, the 0 hole can be transferred 
onto the nearest 0 site, destroying the coherent spin state and creating a new compound 
particle at the new site. The effective hopping amplitude of such a compound particle 
obviously depends on the spin arrangement 

One can easily check that the ground state wave function of one 0 spin-4 hole, coupled 
antiferromagnetically with the two Cu spins surrounding it, is a spin doublet. When this 
compound particle is situated at site m and has a positive spin projection, it is represented 
by the operator 

The GSE for such a compound particle is equal to - J if the exchange operator has the form 
JQ where 

We will now calculate the amplitudes of the effective hopping terms. Starting with a 
sequence of spins CL,+dt 

is the spin permutation operator. 

, it is changed by the Hamiltonian into 
m+q.t 

when the amplitudes are measured in units of r and we have projected the resulting state 
onto the compound particle again. For the sequence of spins CA,+dt the analogous 

calculation results in 
m+q..L 

j - i d t  Ct Ct 
6 m-l12 . t  nt+l.$ 6 m-1lZ . i  m+l.T’ 

The corresponding equations describing how CA.,dt and CA,&dt transform are 

now evident 
m + q . t  m + T J  
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Most likely, a single compound particle problem defined in terms of these hopping 
matrix elements cannot be salved exactly for an arbitrary Cu magnetic anangement 
However, we can solve it for some special backgrounds. The simplest is the ferromagnetic 
case when we can take the basis states to be the following: 

1 1 6 - 1 )  = C l , ~ d S / Z . l . " '  t i  dt N - 1 p . t l  0) 

116-2) =d!/2.+Ci.tdSp.+ " '  d' N-I/Z.tI 0) 

I16-N-i) =dt 1/2.T ~"4-5p,tCf.-l,tIO) 

l16-l~) = Cf.,+d\ ... di 3 10). 
2 . t  N-7.t 

Now using the derived hopping amplitudes for the compound particle applied to these states, 
we find for the corresponding wave functions 

' H b  = ++,,,+I) 2 < m 6 N - 1 

where 'H is the effective Hamiltonian acting in this space of projected states. Similarly, 
hopping from the first and last states in the above sequence results in 

'H16-I = f[16-2+ (-1)N16-N] X16-N = :[$"-I + (-1)N16-l]. 

This is simplified after the local gauge transformation 

which restores translational invariance. Then we have for all states 

We can now impose periodic boundary conditions which yield a = ( k / N ) n  where n is an 
integer. The resulting energy eigenvalues are therefore 

E = -$cos(2xn/N + @ I N )  (23) 

where we again have included the effect of an external magnetic flux @ and we now measure 
the energy in units of 5. In addition to this term we will have the uninteresting, but much 
larger energy - J  of the compound particle. The energies (23) are very similar to what 
would result for a single particle in a periodic lattice in the tight-binding approximation. 
This should be expected as long as the Cu spin background remains undisturbed. Since the 
total spin of this system is very high, the result cannot be compared with the previously 
obtained GSE since these were calculated for the states with the smallest spin. 
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We can also obtain an analytic solution in the somewhat more realistic case involving 
a compound particle and a flipped spin. Now we define the set of basis eigenfunctions as 
follows: 

t I @,&+p) = . . .Cm,?. . .di+l/zL.. . IO) 
t t 

n c N  

m < N  

1 < m 6 n - 1 

= ... d,-,p,, .. .em,, ... IO) 1 6 n 6 m - 1 

t l < n < N - I  I + ' N . ~ + I / z )  = C N . ,  t . . .dn+1,2,L.. . IO) 
I&) = ... c:,, ... IO) 

f 

I < " i N  

I @") = CN., . . . IO). 

In order to use these states in a translationally invariant form, we subject the corresponding 
amplitudes to a local gauge transformation as in (21): 

(24) 

with a = 2rI /N .  When the effective hopping Hamiltonian now acts on these statex, we 
find that it gives 

m ti"- m (icrml- 
@m.r -+ (-1) e Om,, @m + (-1) e @ m  

where r is some half integer labeling the site of a Cu spin and satisfying the conditions 
11 - ml =- 5 and lr - ml < N - . Then the compound particle is outside the range 
where it can interact with the flipped spin. If it is not, then we obtain instead 

3 

Here we have introduced y = a + + J N  when the system is in an external flux 4. The 
solutions of these equations are now translationally invariant and will depend on the distance 
between the compound particle and the spin flip. 

We can now solve this eigenvalue problem. Writing the eigenvalues in the form 

E = -$(e4 + e-q) (28) 

one can easily check that eigenstates will be of the form 
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Substituting these amplitudes into (26), we obtain the two equations 

eliylN-2)l + 4el-q(N-2)1 

4eq + el-iy(N-2)l + 

4eq + eIi~(N-2)lel-~lN-3)1 

where now vm = constant = +. Similarly, we obtain from (27) 

completing the set of three linear equations for the three unknowns A, E and +. The 
solution will give us q(y) and, hence, the energy of the interacting state. We note that the 
quantity e[*iy(N-z)l entering the equations can be transformed into e[*i(+-2Y)l. 

In the limit of a very long chain the effect of periodicity disappears. After some 
elementary calculations the above eigenvalue problem then simplifies to 

16z4 + 8z3cosy - 352' + 12rcosy - 1 = 0 (29) 

where z = expq. Naturally, the energy must depend on the generalized wave number 
y. When y = 0 we reproduce the GSE as in the case of the compound particle in the 
ferromagnetic background. However, non-zero y values will lower the energy. Its minimum 
is E = -1.609 when y = R. Most likely, the energy spectrum will become lower and lower 
with increasing number of spin flips. In the infinite-chain limit it probably becomes a non- 
dispersion level with no periodic dependence on the extemal flux. 

Finite rings are good candidates for studying the behaviour of complex systems that 
include particles and their spin environment. We can now compare the above analytical 
results for one compound particle and one spin flip with our numerical results for one 0 
particle on the background consisting of three and four Cu spins. In both of these cases the 
GSE of the system should then result. For such small systems it is not possible to neglect 
the terms proportional to exp(-qN). 

For a ring with N = 3 Cu spins, the determinant for the above set of linear equations 
simplifies to 

25 cos2 y = (cosy + 2[(e'J + e(-@) I l2 
which has the solutions 

(30) 4 E = 2COS y E = -3  cosy. 

When the number of Cu spins is N = 4, the determinant gives the polynomial equation 

16z6+8z5cosy + (-19 t 8c0s2y)z4+(20cosy+4cosycos2y -50cos3y)z3 
+ (- I9 + 8 C O S ~ Y ) Z ~  + 82 COS y + I6 = 0 
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Figure 11. Ground slate energy of a system wnsisting 
of one 0 and three Cu spins as a function of magnetic 
flux with J =U). The broken curve corresponds to Ihe 
compound particle and the full curve to the numerical 
nsulls. results. 

Figure 12. Ground state energy of a system wnsisting 
of one 0 and four Cu spins as a function of magnetic 
flux with J = 20. The broken cume corresponds to the 
compound paIticle and the full curve to the numerical 

which has the analytical solutions 

) E = 5cosy i J7s - 7 l c o s ~  y ( E=-jcoSy.  4 (31) 

Since the generalized wave number y = a + /N. these energies are functions of the flux 
9. 

In figure 11 we compare the GSE of a system consisting of one 0 and three Cu spins 
found from equation (30) using Ea = -J  + E with our previous numerical results. The 
parameters of the Hamiltonian are J = 20 and t = 1. The broken curve corresponds to 
the numerical results and we see that it coincides with the full curve corresponding to the 
analytical results in the central part of the figure. The results for a ring with N = 4 Cu spins 
are shown in figure 12. The true numerical GSE lies slightly below the analytical result of 
equation (31), but the agreement is still surprisingly good 

6. Conclusions 

The KRE model is probably typical of various strongly correlated fermionic models. We 
have here restricted our considerations to finite rings, consisting of alternating atoms as 
in Cu-0 chain fragments. This problem is not completely academic because in real HT 
superconductors like Y-Ba-Cu-0 the chain fragmenrs form 0 deficient planes and are 
responsible for the charge-transfer mechanism and some other normal properties of such 
substances. Among several interesting properties of the model, we would like to mention 
the unusual dependence of the GSE on the external flux. We explain this in terms of a 
dynamically induced statistical field. It probably allows a superconducting state at zero 
temperature for infinite chains. 

The paper starts with the rigorous analysis of the KRE model when the spin-exchange 
coupling J is negligible. In this limit one can separate the charge and spin degrees of 
freedom and the model can be solved exactly in terms of free fermions. In addition, the 
ground state wave function has a well defined form for any value of the external flux, 
which allows us to perform perturbative calculations over a small parameter J .  There is a 
possibility for a straightforward, but tedious analytical calculation of the minima in the GSE 
using perturbation theory when J << r .  
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For general values of the spin-exchange coupling we calculate the GSE numerically for 
small chains using the variationally based algorithm of Dagotto and Moreo. We can then 
also obtain the charge and spin correlation functions. These calculations can be extended 
to also determine the first excited state. Using finite-size scaling we can then extrapolate to 
large systems where results from conformal field theory can be used. One can then hope to 
estimate the exponents of the correlation functions in this limit. 

In the last part of the paper we consider the opposite limit of a rather small Kondo- 
hopping term where the spin-exchange dominates the dynamics. In this case the compound- 
particle concept is applied to reformulated the initial model in terms of a modified, but also 
strongly correlated, model. This allows a fairly simple solution for N = 3 and N = 4 Cu 
spins which explains our numerical results in this limit The problem of compound particles 
in larger systems should also be addressed. Its solution will give much needed insight and 
understanding of such strongly correlated fermion systems. 
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